Dementia medical screening using mobile applications: A systematic review with a new mapping model

Early detection is the key to successfully tackling dementia, a neurocognitive condition common among the elderly. Therefore, screening using technological platforms such as mobile applications (apps) may provide an important opportunity to speed up the diagnosis process and improve accessibility. Due to the lack of research into dementia diagnosis and screening tools based on mobile apps, this systematic review aims to identify the available mobile-based dementia and mild cognitive impairment (MCI) apps using specific inclusion and exclusion criteria. More importantly, we critically analyse these tools in terms of their comprehensiveness, validity, performance, and the use of artificial intelligence (AI) techniques. The research findings suggest diagnosticians in a clinical setting use dementia screening apps such as ALZ and CognitiveExams since they cover most of the domains for the diagnosis of neurocognitive disorders. Further, apps such as Cognity and ACE-Mobile have great potential as they use machine learning (ML) and AI techniques, thus improving the accuracy of the outcome and the efficiency of the screening process. Lastly, there was overlapping among the dementia screening apps in terms of activities and questions they contain therefore mapping these apps to the designated cognitive domains is a challenging task, which has been done in this research.

Keywords: Cognitive mapping; Dementia; MCI; Machine learning; Mobile apps; Neurodegenerative areas; Screening methods; Systematic review.

Copyright © 2020 Elsevier Inc. All rights reserved.

Similar articles

Konig A, Satt A, Sorin A, Hoory R, Derreumaux A, David R, Robert PH. Konig A, et al. Curr Alzheimer Res. 2018;15(2):120-129. doi: 10.2174/1567205014666170829111942. Curr Alzheimer Res. 2018. PMID: 28847279

Thabtah F, Mampusti E, Peebles D, Herradura R, Varghese J. Thabtah F, et al. J Med Syst. 2019 Dec 11;44(1):24. doi: 10.1007/s10916-019-1469-0. J Med Syst. 2019. PMID: 31828523

Abd Razak MA, Ahmad NA, Chan YY, Mohamad Kasim N, Yusof M, Abdul Ghani MKA, Omar M, Abd Aziz FA, Jamaluddin R. Abd Razak MA, et al. Public Health. 2019 Apr;169:84-92. doi: 10.1016/j.puhe.2019.01.001. Epub 2019 Mar 1. Public Health. 2019. PMID: 30826688

Lin JS, O'Connor E, Rossom RC, Perdue LA, Burda BU, Thompson M, Eckstrom E. Lin JS, et al. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013 Nov. Report No.: 14-05198-EF-1. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013 Nov. Report No.: 14-05198-EF-1. PMID: 24354019 Free Books & Documents. Review.

Yousaf K, Mehmood Z, Awan IA, Saba T, Alharbey R, Qadah T, Alrige MA. Yousaf K, et al. Health Care Manag Sci. 2020 Jun;23(2):287-309. doi: 10.1007/s10729-019-09486-0. Epub 2019 Jun 20. Health Care Manag Sci. 2020. PMID: 31218511 Review.

Cited by

Tsoi KKF, Jia P, Dowling NM, Titiner JR, Wagner M, Capuano AW, Donohue MC. Tsoi KKF, et al. Camb Prism Precis Med. 2022 Dec 6;1:e9. doi: 10.1017/pcm.2022.10. eCollection 2023. Camb Prism Precis Med. 2022. PMID: 38550934 Free PMC article. Review.

Chudzik A, Śledzianowski A, Przybyszewski AW. Chudzik A, et al. Sensors (Basel). 2024 Feb 29;24(5):1572. doi: 10.3390/s24051572. Sensors (Basel). 2024. PMID: 38475108 Free PMC article. Review.

Ford E, Milne R, Curlewis K. Ford E, et al. Wiley Interdiscip Rev Data Min Knowl Discov. 2023 May-Jun;13(3):e1492. doi: 10.1002/widm.1492. Epub 2023 Feb 19. Wiley Interdiscip Rev Data Min Knowl Discov. 2023. PMID: 38439952 Free PMC article. Review.

Di Martino G, Della Valle C, Centorbi M, Buonsenso A, Fiorilli G, Calcagno G, Iuliano E, di Cagno A. Di Martino G, et al. Int J Environ Res Public Health. 2024 Feb 16;21(2):233. doi: 10.3390/ijerph21020233. Int J Environ Res Public Health. 2024. PMID: 38397722 Free PMC article. Review.

Wang C, Liu S, Li A, Liu J. Wang C, et al. J Med Internet Res. 2023 Dec 29;25:e51501. doi: 10.2196/51501. J Med Internet Res. 2023. PMID: 38157230 Free PMC article.